Synthetic Biology
July 26 - August 8, 2022
Application & Materials Deadline: April 1, 2022

Instructors:

Lauren Andrews, University of Massachusetts Amherst
Chase Beisel, Helmholtz Institute for RNA-Based Infection Research, Germany
Vincent Noireaux, University of Minnesota
Michael Smanski, University of Minnesota

Co-Instructor:

Christian Cuba Samaniego
, University of California-Los Angeles

********

COVID-19: All participants planning to attend in-person will be required to provide documentary proof of full vaccination AND first booster (when eligible) with an FDA or EMA approved vaccine. Additional safety measures will be in line with current NY and federal guidelines applicable in summer 2022.

********


See the roll of honor - who's taken the course in the past.


Follow us on Twitter @cshlsynbio

Cells are the world’s most sophisticated chemists, and their ability to adapt to changing environments offers enormous potential for solving modern engineering challenges. Nonetheless, biological systems are noisy, massively interconnected, and non-linear, and they have not evolved to be easily engineered. The grand challenge of synthetic biology is to reconcile the desire for a predictable, formalized biological design process with the inherent ‘squishiness’ of biology.

This course focuses on how the complexity of biological systems can be combined with traditional engineering approaches to result in new design principles for synthetic biology. The centerpiece of the course is an immersive laboratory experience in which students work in teams to learn the practical and theoretical underpinnings of synthetic biology research. Broadly, the course explores how cellular regulation (transcriptional, translational, post-translational, and epigenetic) can be used to engineer cells that accomplish well-defined goals.

Laboratory modules cover the following areas:

  • Cell-free transcription and translation systems to characterize genetic circuits and RNA regulators
  • Modeling gene expression using ordinary differential equations
  • DNA Assembly and Design of Expression Cassettes
  • CRISPR technologies for genome editing and gene regulation

Students will first learn essential synthetic biology techniques in a four-day ‘boot camp’ at the beginning of the course. Following the boot camp, they will rotate through research projects in select areas. Students will also interact closely with a panel of internationally recognized speakers who will collectively provide a broad overview of synthetic biology applications, including renewable chemical production and therapeutics, state-of-the-art techniques, case studies in human practices, and socially responsible innovation.

2022 Lecturers:

James Carothers, University of Washington
James Chappell, Rice University
Katie Galloway, Massachusetts Institute of Technology
Karmella Haynes, Emory University
Ahmad Khalil, Boston University & Wyss Institute at Harvard
Sri Kosuri, University of California, Los Angeles
Megan Palmer, Stanford University
Sai Reddy, ETH Zurich, Switzerland
Pamela Silver, Harvard Medical School
Danielle Tullman-Ercek, Northwestern University


Application Instructions:

Synthetic biology is an inherently interdisciplinary field. We encourage students of all backgrounds to apply, from experimental biology to very theoretical fields. At the end of your personal statement/essay, please rank your interest in the following major available laboratory modules (from highest to lowest interest):

(1) Cell-free transcription and translation systems to characterize genetic circuits and RNA regulators

(2) Modeling gene expression using ordinary differential equations

(3) DNA Assembly and Design of Expression Cassettes

(4) CRISPR technologies for genome editing and gene regulation

Cost: $4,090

This tuition rate is all-inclusive and includes housing and food. Additional financial aid is available; to indicate financial need, please submit a short stipend request as part of your application materials.

This course is supported with funds provided by: National Science FoundationHoward Hughes Medical Institute and Helmsley Charitable Trust.

We would like to acknowledge the following companies that provided invaluable support:
Microscopes:
Thermo Fisher Scientific
Equipment: Agilent Technologies, Ametek, BD Life Sciences, BioTek Instruments, Daicel Arbor Biosciences, Labcyte Inc, Molecular Devices, New Era Syringe Pump Inc, Sony Biotechnology, Thermo Fisher Scientific


No fees are due until you have completed the full application process and are accepted into the course. Students accepted into the course should plan to arrive by early evening on July 25 and plan to depart after lunch on August 8.

Before applying, ensure you have (all due April 1):
  1. Personal statement/essay;
  2. Letter(s) of recommendation;
  3. Curriculum vitae/resume (optional);
  4. Financial aid request (optional).
    More details.

If you are not ready to fully apply but wish to express interest in applying, receive a reminder two weeks prior to the deadline, and tell us about your financial aid requirements, click below: